MOS (PTY) LTD.

Microsystems On Silicon

Member of ELMOS Semiconductor AG

General Description

The M931.08B integrated circuit is designed for interfacing Thermopile sensors with microcontrollers or processors. A single wire Data Out, Clock In (DOCI) interface is provided for interfacing with a micro-controller. Multiple devices can easily be operated at the same time.

One thermopile sensor connects directly to the analog inputs of the IC. The sensor signal is converted to a 17 bit digital value.

The M931.08B contains an on chip temperature measurement circuit with a resolution of better than 0.02K.

A 14 bit temperature value as well as a 17 bit sensor value is supplied to an external microcontroller through the DOCI interface.

E931.08A Single Channel Thermopile Signal Processor

Applications

- Compact ear thermometer
- High precision remote temperature sensing
- Infrared pyrometers

Features

- Direct connection to thermopile elements
- Temperature measurement
- Differential analog input
- Digital Signal Processing (DSP)
- ♦ Single wire serial interface (DOCITM)
- Operating voltage down to 2.7V
- Low current consumption
- High dynamic range
- High supply rejection

Application Diagram _

Compact ear thermometer

Electrical Characteristics_

Absolute Maximum Ratings

Parameter	Symbol	Min	Max	Unit	Remarks
Supply Voltage	V _{DD}	-0.3	3.6	V	
Current into any pin		-100	100	mA	One pin at a time
Storage Temperature	T _{ST}	-45	125	°C	

Stresses beyond those listed above may cause permanent damage to the device. Exposure to absolute maximum ratings may affect the device reliability.

ESD protection: all pins will be able to withstand a discharge of a 100pF capacitor charged to 1.6kV through a 1500Ω series resistor. Test method: MIL-STD-883D method 3015.

Operating Conditions (T=25°C, unless stated otherwise)

Operating temperature range: -25 to +70°C

Symbol	Min	Тур	Max	Unit	Remarks
	1	1		1	
V	27	2.2	2.6	V	
V _{DD}	2.1	3.3	3.0	V	\/_22\/
DD			15	μΛ	VDD-0.0V
V _{IL}			20	$%V_{DD}$	
V _{IH}	80			$%V_{DD}$	
		200		μA	IN/Out to V _{DD}
		130		μA	IN/Out to V _{SS}
		5		pF	
t _s	2			1/F _{CLK}	μC defines T _{REP}
tL	200			ns	
t _H	200			ns	
t _{bit}	1			μs	$C_{LOAD} = 10 pF$
$t_L + t_{bit}$			1/F _{CLK}		
T _{REP}		32		1/F _{CLK}	
T _{REP}		512		1/F _{CLK}	E931.08 defines T _{REP}
gital Conv	/erter				
	30	60		MΩ	V _{IN} = -50mV +50mV
	-50		50	mV	Differential
	-100		100	mV	Common Mode
		17		Bits	
	0.7	0.8	0.9	µV/count	
	-300		300	ppm/K	
	Symbol V _{DD} I _{DD} VIL VIH t _s t _L t _H t _L T _{REP} Gital Conv	Symbol Min V_{DD} 2.7 I_{DD} 2.7 I_{DD} 2.7 I_{DD} 2.7 V_{DD} 2.7 V_{DD} 2.7 V_{DD} 2.7 V_{IL} 80 V_{IH} 80 I_{H} 200 t_{H} 200 t_{H} 200 t_{H} 200 T_{REP} 1 T_{REP} 7 gital Converter 30 -50 -100 -50 -300	Symbol Min Typ V_{DD} 2.7 3.3 I_{DD} 2.7 3.3 V_{IL} 2.0 1 V_{IH} 80 200 I_{H} 200 1 t_L 200 1 t_H 200 1 T_{REP} 32 1 T_{REP} 32 1 $Symbol -50 1 -100 17 1 0.7 0.8 -300 $	SymbolMinTypMax V_{DD} 2.73.33.6 I_{DD} 2.73.33.6 I_{DD} 2.73.33.6 I_{DD} 2.73.33.6 I_{DD} 2.73.33.6 V_{DD} 2.73.33.6 V_{DD} 2.73.33.6 V_{DD} 2.72.020 V_{IL} 8020020 V_{IH} 8020020 t_{s} 2120 t_{L} 2002020 t_{H} 20020020 t_{H} 20020020 t_{H} 20020020 t_{H} 20020020 t_{H} 20020020 t_{H} 2002020 t_{H} 2002020 t_{H} 2002020 t_{H} 306020 t_{H} 306020 t_{H} 205050 t_{H} 201720 t_{H} 202020 t_{H} 202020 t_{H} 300300	Symbol Min Typ Max Unit V_{DD} 2.7 3.3 3.6 V I_{DD} 2.7 3.3 3.6 V V_{IL} 2.7 2.0 96 96 V_{IH} 80 200 $µA$ 96 I_{L} 200 130 µA 96 t_{L} 200 Ins ns 1/F _{CLK} t_{H} 200 Ins ns 1/F _{CLK} T_{REP} 32 1/F _{CLK} 1/F _{CLK} T_{REP} 30 60 MQ -100

RMS output noise referred to input 0.5 µV/√Hz @ 1Hz ADC Offset 64500 counts 2nd Order BW LPF F_{CLK} * 1.41 / 2048 / PI Digital Filter Type & Cut off Freq. Ηz F_0 Digital Filter Sampling Freq. 1/32 F_{ADC} $\mathsf{F}_{\mathsf{CLK}}$

Temperature Measurement						
Gain			90		Counts/K	-20°C to +90°C
Measurement Range		-20		+90	°C	
Linearity		-5		5	%	-20°C to +90°C
Count Value @ 25 °C			7900			
Oscillator						
Internal Oscillator Frequency	Fosc		70		kHz	
Internal clock frequency	F _{CLK}		F _{OSC} /2			
Temperature Dependency		-1000		1000	ppm/k	-20°C to +80°C

Detailed Description

Oscillator

The IC contains an on chip low power oscillator, with a frequency of 70 kHz. All time related signals and the cutoff frequencies of the digital filters are related to the oscillator's frequency.

Analog Inputs and A/D Conversion

The analog to digital converter generates a digital signal from the voltage level measured between the IP and IN terminals.

Decimation

The output signal from the ADC is converted to a 17 bit value by down sampling to Fclk/32.

Temperature Measurement

The on chip temperature is measured by converting the temperature dependent voltage of the reference to a digital value with a resolution of 0.01K.

Parallel to Serial Data Latch

Data is transferred from the decimators to the serial interface whenever new data is available and the DOCI output is not active (being read) or at "H" level. If the micro controller reads the register faster than the update rate of the filter, the data read is "0".

The start of a read cycle is indicated by the M931.08B by pulling DOCI high.

The microcontroller generates a low to high transition on the DOCI line, before is samples the data bit. The first bit read is the MSB. This process is repeated until all 31 bits have been read. After the last bit is read, the microcontroller must force low level and subsequently release DOCI.

When a new ADC value is generated, the M931.08B will pull the DOCI line high and a new data byte can be read. If reading is interrupted for more than 1 system clock with the DOCI

DOCI Interface

M931.08B Single Channel Thermopile Signal Processor

interface at low level, the output data latch is updated with new values. Reading can be interrupted, while the DOCI interface is forced high. The output latch is not updated in this condition.

As there is a new filter value available every 32 system clock cycles, the device accepts shorter readout cycles (T_{REP}). To make use of this feature, the microcontroller must force an "H" level on the DOCI line for at least 2 clock cycles (t_S). Thereafter, it can read out the data bits as usual.

The DOCI line must be at "L" level for at least 2 system clock cycles to ensure, that the interface is loaded with new data.

A synchronized or uniform reading is recommended to achieve optimum signal to noise ratio.

 $T_{REP} = 512$ system clocks

ADC Input Stage

The input impedance of the actual ADC (IP / IN) is approximately $30 M \Omega.$

Pad Positions_

Dimensions without scribe: 660µm x 1190µm For final step size add scribe width. Example: 100u scribe -> 760µm x 1290µm

Contact Information

Microsystems On Silicon (Pty) Ltd. Pretoria, South Africa Tel: +27 (12) 3488367 Fax: +27 (12) 3481790 email: sales@mos.co.za Visit our website for the latest information